Activation of type II calcium/calmodulin-dependent protein kinase by Ca2+/calmodulin is inhibited by autophosphorylation of threonine within the calmodulin-binding domain.

نویسندگان

  • B L Patton
  • S G Miller
  • M B Kennedy
چکیده

It is now well established that autophosphorylation of a threonine residue located next to each calmodulin-binding domain in the subunits of type II Ca2+/calmodulin-dependent protein kinase causes the kinase to remain active, although at a reduced rate, after Ca2+ is removed from the reaction. This autophosphorylated form of the kinase is still sensitive to Ca2+/calmodulin, which is required for a maximum catalytic rate. After removal of Ca2+, new sites are autophosphorylated by the partially active kinase. Autophosphorylation of these sites abolishes sensitivity of the kinase to Ca2+/calmodulin (Hashimoto, Y., Schworer, C. M., Colbran, R. J., and Soderling, T. R. (1987) J. Biol. Chem. 262, 8051-8055). We have identified two pairs of homologous residues, Thr305 and Ser314 in the alpha subunit and Thr306 and Ser315 in the beta subunit, that are autophosphorylated only after removal of Ca2+ from an autophosphorylation reaction. The sites were identified by direct sequencing of labeled tryptic phosphopeptides isolated by reverse-phase high pressure liquid chromatography. Thr305-306 is rapidly dephosphorylated by purified protein phosphatases 1 and 2A, whereas Ser314-315 is resistant to dephosphorylation. We have shown by selective dephosphorylation that the presence of phosphate on Thr305-306 blocks sensitivity of the kinase to Ca2+/calmodulin. In contrast, the presence of phosphate on Ser314-315 is associated with an increase in the Kact for Ca2+/calmodulin of only about 2-fold, producing a relatively small decrease in sensitivity to Ca2+/calmodulin.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of calcium/calmodulin-dependent kinase II following bovine rotavirus enterotoxin NSP4 expression

Objective(s): The rotavirus nonstructural protein 4 (NSP4) is responsible for the increase in cytoplasmic calcium concentration through a phospholipase C-dependent and phospholipase C-independent pathways in infected cells. It is shown that increasing of intracellular calcium concentration in rotavirus infected cells is associated with the activation of some members of protein kinases family su...

متن کامل

Dual regulation of a chimeric plant serine/threonine kinase by calcium and calcium/calmodulin.

A chimeric Ca2+/calmodulin-dependent protein kinase (CCaMK) gene characterized by a catalytic domain, a calmodulin-binding domain, and a neural visinin-like Ca2+-binding domain was recently cloned from plants (Patil, S., Takezawa, D., and Poovaiah, B. W. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 4797-4801). The Escherichia coli-expressed CCaMK phosphorylates various protein and peptide substra...

متن کامل

Inhibitory autophosphorylation of multifunctional Ca2+/calmodulin-dependent protein kinase analyzed by site-directed mutagenesis.

Initial autophosphorylation of multifunctional Ca2+/calmodulin-dependent protein kinase (CaM kinase) occurs at Thr286 (the "autonomy" site) and converts the kinase from a Ca(2+)-dependent to a partially Ca(2+)-independent or autonomous enzyme. After removal of Ca2+/calmodulin, the autonomous kinase undergoes a "burst" of inhibitory autophosphorylation at sites distinct from the autonomy site wh...

متن کامل

Plant chimeric Ca2+/Calmodulin-dependent protein kinase. Role of the neural visinin-like domain in regulating autophosphorylation and calmodulin affinity.

Chimeric Ca(2+)/calmodulin-dependent protein kinase (CCaMK) is characterized by a serine-threonine kinase domain, an autoinhibitory domain, a calmodulin-binding domain and a neural visinin-like domain with three EF-hands. The neural visinin-like Ca(2+)-binding domain at the C-terminal end of the CaM-binding domain makes CCaMK unique among all the known calmodulin-dependent kinases. Biological f...

متن کامل

Plant Chimeric Ca/Calmodulin-dependent Protein Kinase ROLE OF THE NEURAL VISININ-LIKE DOMAIN IN REGULATING AUTOPHOSPHORYLATION AND CALMODULIN AFFINITY*

Chimeric Ca/calmodulin-dependent protein kinase (CCaMK) is characterized by a serine-threonine kinase domain, an autoinhibitory domain, a calmodulin-binding domain and a neural visinin-like domain with three EF-hands. The neural visinin-like Ca-binding domain at the C-terminal end of the CaM-binding domain makes CCaMK unique among all the known calmodulindependent kinases. Biological functions ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 265 19  شماره 

صفحات  -

تاریخ انتشار 1990